
5.3

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases d = 0 ,

z ≫ d , and z → ∞ , and confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., z ≫ d), the two source

charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let z ≫ d; then we

can neglect d2 in Equation 5.5 to obtain

lim
d → 0

E→ = 1
4πε0

2qz
⎡
⎣z2⎤

⎦
3/2 k̂

= 1
4πε0

2qz
z3 k̂

= 1
4πε0

⎛
⎝2q⎞

⎠

z2 k̂ ,

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for d ≪ z ≪ ∞ , this becomes

(5.7)E→ (z) = 1
4πε0

qd
z3 i

^
,

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of E→ are still

correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the denominator.)
If z is very large (z → ∞) , then E → 0 , as it should; the two charges “merge” and so cancel out.

Check Your Understanding What is the electric field due to a single point particle?

Try this simulation of electric field hockey (https://openstaxcollege.org/l/21elefielhocke) to get the
charge in the goal by placing other charges on the field.

5.5 | Calculating Electric Fields of Charge Distributions

Learning Objectives

By the end of this section, you will be able to:

• Explain what a continuous source charge distribution is and how it is related to the concept of
quantization of charge

• Describe line charges, surface charges, and volume charges

• Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast
with a continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous
rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal
pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most
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practical cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore
the discrete nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when
we deal with a bucket of water as a continuous fluid, rather than a collection of H2 O molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as
shown in Figure 5.22.

Figure 5.22 The configuration of charge differential elements for a (a) line charge, (b) sheet of
charge, and (c) a volume of charge. Also note that (d) some of the components of the total electric field
cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

• λ ≡ charge per unit length ( linear charge density); units are coulombs per meter (C/m)

• σ ≡ charge per unit area ( surface charge density); units are coulombs per square meter (C/m2)

• ρ ≡ charge per unit volume ( volume charge density); units are coulombs per cubic meter (C/m3)

Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an integral and
qi is replaced by dq = λdl , σdA , or ρdV , respectively:

(5.8)
Point charge: E→ (P) = 1

4πε0
∑
i = 1

N ⎛
⎝

qi
r2

⎞
⎠ r̂

(5.9)
Line charge: E→ (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠ r̂

(5.10)
Surface charge: E→ (P) = 1

4πε0
⌠
⌡surface

⎛
⎝

σdA
r2

⎞
⎠ r̂

(5.11)
Volume charge: E→ (P) = 1

4πε0
⌠
⌡volume

⎛
⎝

ρdV
r2

⎞
⎠ r̂

The integrals are generalizations of the expression for the field of a point charge. They implicitly include and assume the
principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for dl, dA, or
dV, as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of r in these equations: It is the distance from the charge element ⎛
⎝qi, λdl, σdA, ρdV ⎞

⎠ to the

location of interest, P(x, y, z) (the point in space where you want to determine the field). However, don’t confuse this with
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the meaning of r̂ ; we are using it and the vector notation E→ to write three integrals at once. That is, Equation 5.9 is

actually

Ex (P) = 1
4πε0

⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠x, Ey (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠y, Ez (P) = 1

4πε0
⌠
⌡line

⎛
⎝

λdl
r2

⎞
⎠z.

Example 5.5

Electric Field of a Line Segment

Find the electric field a distance z above the midpoint of a straight line segment of length L that carries a uniform
line charge density λ .

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of
length dl, each of which carries a differential amount of charge dq = λdl . Then, we calculate the differential

field created by two symmetrically placed pieces of the wire, using the symmetry of the setup to simplify the
calculation (Figure 5.23). Finally, we integrate this differential field expression over the length of the wire (half
of it, actually, as we explain below) to obtain the complete electric field expression.

Figure 5.23 A uniformly charged segment of wire. The
electric field at point P can be found by applying the
superposition principle to symmetrically placed charge elements
and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment,
from far away, it should look like a point charge. We will check the expression we get to see if it meets this
expectation.

The electric field for a line charge is given by the general expression

E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ .

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal
(x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this formally.

The total field E→ (P) is the vector sum of the fields from each of the two charge elements (call them E→ 1 and

E→ 2 , for now):

E→ (P) = E→ 1 + E→ 2 = E1x i
^

+ E1z k̂ + E2x
⎛
⎝− i

^⎞
⎠ + E2z k̂ .
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5.4

Because the two charge elements are identical and are the same distance away from the point P where we want to
calculate the field, E1x = E2x, so those components cancel. This leaves

E→ (P) = E1z k̂ + E2z k̂ = E1 cos θ k̂ + E2 cos θ k̂ .

These components are also equal, so we have

E→ (P) = 1
4πε0

⌠
⌡

λdl
r2 cos θ k̂ + 1

4πε0
⌠
⌡

λdl
r2 cos θ k̂

= 1
4πε0

⌠
⌡0

L/2
2λdx

r2 cos θ k̂

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that

lies on the x-axis. (The limits of integration are 0 to L
2 , not − L

2 to + L
2 , because we have constructed the net

field from two differential pieces of charge dq. If we integrated along the entire length, we would pick up an
erroneous factor of 2.)

In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables
that are not given. In this case, both r and θ change as we integrate outward to the end of the line charge, so those

are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

r = ⎛
⎝z2 + x2⎞

⎠
1/2

and

cos θ = z
r = z

⎛
⎝z2 + x2⎞

⎠
1/2.

Substituting, we obtain

E→ (P) = 1
4πε0

⌠
⌡0

L/2
2λdx

⎛
⎝z2 + x2⎞

⎠

z
⎛
⎝z2 + x2⎞

⎠
1/2 k̂

= 1
4πε0

⌠

⌡
⎮

0

L/2

2λz
⎛
⎝z2 + x2⎞

⎠
3/2dx k̂

= 2λz
4πε0

⎡

⎣
⎢ x
z2 z2 + x2

⎤

⎦
⎥|0L/2

k̂

which simplifies to

(5.12)E→ (z) = 1
4πε0

λL

z z2 + L2
4

k̂ .

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating
electric fields. The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and
may need to be calculated numerically by a computer.

Check Your Understanding How would the strategy used above change to calculate the electric field at
a point a distance z above one end of the finite line segment?
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Example 5.6

Electric Field of an Infinite Line of Charge

Find the electric field a distance z above the midpoint of an infinite line of charge that carries a uniform line
charge density λ .

Strategy

This is exactly like the preceding example, except the limits of integration will be −∞ to +∞ .

Solution

Again, the horizontal components cancel out, so we wind up with

E→ (P) = 1
4πε0

⌠
⌡−∞

∞
λdx
r2 cos θ k̂

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. Again,

cos θ = z
r = z

⎛
⎝z2 + x2⎞

⎠
1/2.

Substituting, we obtain

E→ (P) = 1
4πε0

⌠
⌡−∞

∞
λdx

⎛
⎝z2 + x2⎞

⎠

z
⎛
⎝z2 + x2⎞

⎠
1/2 k̂

= 1
4πε0

⌠

⌡
⎮

−∞

∞

λz
⎛
⎝z2 + x2⎞

⎠
3/2dx k̂

= λz
4πε0

⎡

⎣
⎢ x
z2 z2 + x2

⎤

⎦
⎥|−∞

∞

k̂ ,

which simplifies to

E→ (z) = 1
4πε0

2λ
z k̂ .

Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for z ≫ L , z2 dominates the L in the denominator, so that Equation 5.12

simplifies to

E→ ≈ 1
4πε0

λL
z2 k̂ .

If you recall that λL = q , the total charge on the wire, we have retrieved the expression for the field of a point charge, as

expected.

In the limit L → ∞ , on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length

is much, much greater than either of its other dimensions, and also much, much greater than the distance at which the field
is to be calculated:
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(5.13)E→ (z) = 1
4πε0

2λ
z k̂ .

An interesting artifact of this infinite limit is that we have lost the usual 1/r2 dependence that we are used to. This will

become even more intriguing in the case of an infinite plane.

Example 5.7

Electric Field due to a Ring of Charge

A ring has a uniform charge density λ , with units of coulomb per unit meter of arc. Find the electric potential at

a point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle.
We divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in
Figure 5.24.

Figure 5.24 The system and variable for calculating the
electric field due to a ring of charge.

Solution

The electric field for a line charge is given by the general expression

E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ .

A general element of the arc between θ and θ + dθ is of length Rdθ and therefore contains a charge equal to

λRdθ. The element is at a distance of r = z2 + R2 from P, the angle is cos ϕ = z
z2 + R2

, and therefore the

electric field is
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E→ (P) = 1
4πε0

⌠
⌡line

λdl
r2 r̂ = 1

4πε0
⌠
⌡0

2π
λRdθ

z2 + R2
z

z2 + R2
ẑ

= 1
4πε0

λRz
⎛
⎝z2 + R2⎞

⎠
3/2 ẑ ∫

0

2π
dθ = 1

4πε0
2πλRz

⎛
⎝z2 + R2⎞

⎠
3/2 ẑ

= 1
4πε0

qtot z
⎛
⎝z2 + R2⎞

⎠
3/2 ẑ .

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we
take the limit of z>>R , we find that

E→ ≈ 1
4πε0

qtot
z2 ẑ ,

as we expect.

Example 5.8

The Field of a Disk

Find the electric field of a circular thin disk of radius R and uniform charge density at a distance z above the center
of the disk (Figure 5.25)

Figure 5.25 A uniformly charged disk. As in the line charge
example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy

The electric field for a surface charge is given by

E→ (P) = 1
4πε0

⌠
⌡surface

σdA
r2 r̂ .

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the
shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components
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5.5

cancel and the field is entirely in the vertical ( k̂ ) direction. The vertical component of the electric field is

extracted by multiplying by cos θ , so

E→ (P) = 1
4πε0

⌠
⌡surface

σdA
r2 cos θ k̂ .

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

dA = 2πr ′ dr′
r2 = r′2 + z2

cos θ = z
⎛
⎝r′2 + z2⎞

⎠
1/2.

(Please take note of the two different “r’s” here; r is the distance from the differential ring of charge to the point
P where we wish to determine the field, whereas r′ is the distance from the center of the disk to the differential

ring of charge.) Also, we already performed the polar angle integral in writing down dA.

Solution

Substituting all this in, we get

E→ (P) = E→ (z) = 1
4πε0

⌠

⌡
⎮

0

R

σ(2πr′ dr′)z
⎛
⎝r′2 + z2⎞

⎠
3/2 k̂

= 1
4πε0

(2πσz)
⎛

⎝
⎜1
z − 1

R2 + z2

⎞

⎠
⎟k̂

or, more simply,

(5.14)
E→ (z) = 1

4πε0

⎛

⎝
⎜2πσ − 2πσz

R2 + z2

⎞

⎠
⎟k̂ .

Significance

Again, it can be shown (via a Taylor expansion) that when z ≫ R , this reduces to

E→ (z) ≈ 1
4πε0

σπR2

z2 k̂ ,

which is the expression for a point charge Q = σπR2.

Check Your Understanding How would the above limit change with a uniformly charged rectangle
instead of a disk?

As R → ∞ , Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much, much

greater than its thickness, and also much, much greater than the distance at which the field is to be calculated:

(5.15)E→ = σ
2ε0

k̂ .

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge.
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5.6

Does the plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how
far you are from it. It is important to note that Equation 5.15 is because we are above the plane. If we were below, the

field would point in the − k̂ direction.

Example 5.9

The Field of Two Infinite Planes

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities
(Figure 5.26).

Figure 5.26 Two charged infinite planes. Note the direction of
the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of
superposition to find the field from two.

Solution

The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the σ are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel

each other out to zero.

However, in the region between the planes, the electric fields add, and we get

E→ = σ
ε0

i
^

for the electric field. The i
^

is because in the figure, the field is pointing in the +x-direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform
electric fields.

Check Your Understanding What would the electric field look like in a system with two parallel
positively charged planes with equal charge densities?

212 Chapter 5 | Electric Charges and Fields

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9




